“New” boundary conditions in integrable lattice models

نویسنده

  • Anastasia Doikou
چکیده

We consider the case of an integrable quantum spin chain with “soliton non-preserving” boundary conditions. This is the first time that such boundary conditions have been considered in the spin chain framework. We construct the transfer matrix of the model, we study its symmetry and we find explicit expressions for its eigenvalues. Moreover, we derive a new set of Bethe ansatz equations by means of the analytical Bethe ansatz method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrable Boundaries and Universal TBA Functional Equations

We derive the fusion hierarchy of functional equations for critical A-D-E lattice models related to the sl(2) unitary minimal models, the parafermionic models and the supersymmetric models of conformal field theory and deduce the related TBA functional equations. The derivation uses fusion projectors and applies in the presence of all known integrable boundary conditions on the torus and cylind...

متن کامل

Integrable and Conformal Boundary Conditions for Zk Parafermions on a Cylinder

We study integrable and conformal boundary conditions for ŝl(2) Zk parafermions on a cylinder. These conformal field theories are realized as the continuum scaling limit of critical A-D-E lattice models with negative spectral parameter. The conformal boundary conditions labelled by (a,m) ∈ (G,Z2k) are identified with associated integrable lattice boundary conditions labelled by (r, a) ∈ (Ag−2, ...

متن کامل

Integrable Boundary Conditions and W - Extended Fusion in the Logarithmic Minimal Models LM ( 1 , p ) Paul

We consider the logarithmic minimal models LM(1, p) as ‘rational’ logarithmic conformal field theories with extended W symmetry. To make contact with the extended picture starting from the lattice, we identify 4p − 2 boundary conditions as specific limits of integrable boundary conditions of the underlying Yang-Baxter integrable lattice models. Specifically, we identify 2p integrable boundary c...

متن کامل

Integrable and Conformal Boundary Conditions for ŝl(2) A–D–E Lattice Models and Unitary Minimal Conformal Field Theories

Integrable boundary conditions are studied for critical A–D–E and general graph-based lattice models of statistical mechanics. In particular, using techniques associated with the Temperley-Lieb algebra and fusion, a set of boundary Boltzmann weights which satisfies the boundary Yang-Baxter equation is obtained for each boundary condition. When appropriately specialized, these boundary weights, ...

متن کامل

Integrable Lattice Realizations of Conformal Twisted Boundary Conditions

We construct integrable lattice realizations of conformal twisted boundary conditions for ŝl(2) unitary minimal models on a torus. These conformal field theories are realized as the continuum scaling limit of critical A-D-E lattice models with positive spectral parameter. The integrable seam boundary conditions are labelled by (r, s, ζ) ∈ (Ag−2, Ag−1,Γ) where Γ is the group of automorphisms of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001